Bridging Booklet

What is this booklet for:

This is simply designed to be a bridging Chemistry booklet.
It has work to prepare you for the A level you are starting in September.
It contains a series of topics that you will have covered in GCSE and it is then extended into some A level standard work.

How to use the booklet:

1) Read over the explanation notes and examples
2) Look over work from your GCSE exercise books and revision guides
3) Look on the internet for other guidance, google the chapter titles!
4) COMPLETE the Tasks in the ANSWER booklet section.

Example of a typical covalently
bonded compound
Water

Chapter 1

Bonding

This is a cornerstone of chemistry, when elements react together they form new compounds which have two or more elements chemically joined.

There are two main types of chemical bond.
Ionic -----between a Metal and Non-metal
Covalent ------between Non-metal and Non-metal

Task 1

Decide if the compounds below are lonically or covalently bonded together and why?
a) Ammonia NH_{3}
b) Zinc Oxide ZnO
c) Methane CH_{4}
d) Benzene $\quad \mathrm{C}_{6} \mathrm{H}_{6}$
e) Potassium Dichromate $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

lonic Bonding

This is an ELECTROSTATIC ATTRACTION between 2 oppositely charged species called IONS.

The compound is formed is neutral, which means it has no overall charge.
i.e. it has an equal amount of positive and negative charge from the different ions that are making it up.

How are IONS made?

This is seen by the diagram above:

METALS: (Calcium)	NON- METALS (Chlorine)
They form Positive ions as they lose	They form NEGATIVE ions as they
their outer electrons to form a FULL	gain electrons to form a FULL OUTER OUTER SHELL.
SHELL.	
Calcium 2 electrons in its outer shell as element so LOSES 2 electrons to become a 2+ ion	Chlorine has 7 electrons in its outer shell so will GAIN 1 electron to become a 1- ion

Task 2

Draw out Atom and Ions for the following ionic compounds (like the calcium Oxide diagram above)

1) Aluminium Oxide
2) Lithium Oxide
3) Barium Nitride

Formula of Ionic compounds

When we form an Ionic compound we have oppositely charged ions attracted together so that a neutral compound is formed.

This means there is a balance between the positive metals ions and negative non-metal ions.

You swap the NUMBERS of the charge over

If a 1 you ignore it
If get 2 numbers the same ignore them

Aluminium Oxide made from Aluminium ions and Oxide ions.

aluminum hydroxide
 barium sulfate

Other examples above(don't worry about the writing in red)

Task 3 (Use appendix I)

Using the table of common ions work out the formula of the following ionic compounds.

1) Silver chloride
2) Lithium sulphate
3) Ammonium Hydroxide
4) Potassium Dichromate
5) Iron (II) Nitrate

Formula interpretation

When we have calculated the formula of a compound it is important we can interpret the information about the number of atoms and types of elements in the compound.
e.g.

Calcium Carbonate
CaCO_{3}
1 Ca
1 C
30

Task 4

Look at the following compounds and work out the number and type of elements in the compound.

1) AgNO_{3}
2) PbCO_{3}
3) SnCl_{2}
4) $\mathrm{Mg}(\mathrm{OH})_{2}$

Covalent bonding

The covalent bond is made up from non-metal atoms that want to bond together.

Covalent bonds are made from the atoms sharing their electrons to get a FULL OUTER SHELL.

The above example shows,
Phosphorus in group 5 with 5 outer electrons sharing 1 electron each with a chlorine atom which is in group 7 .

Both the Phosphorus and Chlorine NOW have their FULL OUTER SHELL.

More examples

The example shows a series of covalently bonded molecules where the atoms have all got a FULL OUTER SHELL.
Please note
DOUBLE BOND on the CO_{2} molecule .

The 4 SINGLE BONDS from the carbon attached to each individual F in the CF_{4} molecule.

EXT Line diagrams

These are simpler versions of the shown DOT-CROSS diagrams where you show each bond (PAIR of ELECTRONS) as a line between the atoms in the molecule
e.g.

Task 5

Draw out the Dot/ Cross diagrams and Line diagram of the following molecules:

1) Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$
2) Propene $\mathrm{C}_{3} \mathrm{H}_{6}$
3) Hydrogen Peroxide $\mathrm{H}_{2} \mathrm{O}_{2}$
4) Hydrogen Sulphide $\mathrm{H}_{2} \mathrm{~S}$

Chapter 2

Structure

There are 4 main structures you need to be aware of

1) Metallic structure
2) Giant Ionic
3) Giant covalent / Macromolecular
4) Simple Molecular
5) Metallic

This occurs in metals.

These are strongly bonded structures which have HIGH boiling and melting points.
They CAN conduct electricity due to the FREE ELECTRONS.

2 Giant lonic

This occurs as a LATTICE of IONS electrostatically attached together with the positive ions being attracted to the negative ions.
It occurs in Ionically bonded compounds.

3 Giant covalent / Macromolecular

This occurs in a select number of covalently bonded compounds which have ALL their atoms covalently bonded together in a large structure.
Key examples are ALLOTROPES of carbon (look up what Allotrope means!) and silicon dioxide

Diamond
diamond structure

Silicon Dioxide

Graphite

thong bend

EXT

Buckminster Fullerene

This is a C_{60} molecule in the shape of a football.

They were discovered in the UK in 1985 and the chemists involved won the Nobel prize in 1996.

4) Simple Molecular

This occurs in covalently bonded molecules which have STRONG covalent bonds inside the molecules
But
Much weaker INTERMOLECULAR bonds between the molecules.
The three types of INTERMOLECULAR bond/ force are:

- Van Der Waals
- Permanent Dipole
- Hydrogen Bond

Strong covalent bonds within each I_{2} molecule

Weak van der Waals' forces between
I_{2} molecules

Task 6

Research task
Find out what the trend in melting/ boiling point is for $\mathrm{Na}-\mathrm{Mg}-\mathrm{Al}$ (the metal in the third period)
Explain why there is this trend (linked to their structure)
http://www.creative-chemistry.org.uk/alevel/module1/trends8.htm
(basic source exemplar)

Chapter 3

Equations

We will be most interested in BALANCED symbol equations.
These show us exactly what elements are in the reactants and the products and we need the SAME amount on both sides of the equation.

Example

Calcium + Oxygen $\longrightarrow \mathrm{O}_{2} \longrightarrow$ Calcium Oxide
$\mathrm{Ca} \longrightarrow \mathrm{CaO}$

This is not balanced,
So we need to ADD large numbers in front of the formula given to balance it.

Firstly

$$
\begin{aligned}
\mathrm{Ca}+\mathrm{O}_{2} \longrightarrow & 2 \mathrm{CaO} \\
& \text { Added a } 2 \text { in front to get the } \\
& \text { right number of oxygen's. } \\
& \text { But } \\
& \text { This means we know have too } \\
& \text { many calcium's. }
\end{aligned}
$$

So we now need to add 2 on this side as well

$$
2 \mathrm{Ca}+\mathrm{O}_{2} \quad \longrightarrow 2 \mathrm{CaO}
$$

It is now a Balanced equation.

Task 7

Balance the following equations:

1) $\mathrm{N}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}$
2) $\mathrm{CH}_{4}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
3) $\mathrm{Na}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2}$
4) $\mathrm{SO}_{2}+\mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$
5) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

State symbols

These are linked to the three states of matter

- Gas
- Liquid
- Solid(I)

Also we have (aq) for a solution.

EXT

Ionic compounds in solutions

When we dissolve an ionic compound it is the separate ions in the compound being split apart and bonded to the water.

$$
\begin{aligned}
& \mathrm{NaCl}(\mathrm{~s})+\mathrm{aq} \longrightarrow \mathrm{NaCl}(\mathrm{aq}) \\
& \mathrm{Is} \text { in fact } \\
& \mathrm{Na}+(\mathrm{aq}) \\
& \mathrm{Cl}-(\mathrm{aq})
\end{aligned}
$$

Chapter 4

Mole work.

In its most basic form the 'MOLE' is just a word used to describe a number.
e.g.
Couple
2
Dozen 12
Mole
$6.02 \times 10^{23}(602000000000000000000000)$

Why this large number?

It was found that this number of ATOMS of any element is equal to the MASS NUMBER of this element in grams.
e.g.
6.02×10^{23} carbon atoms is equal to 12 g
6.02×10^{23} neon atoms is equal to 20 g

This leads to the FIRST mole equation.

Moles $=\quad$ Mass R.A.M (relative atomic mass)

e.g.

How many moles are there in 24 g of carbon?

Moles	$=\frac{\text { Mass }}{\text { R.A.M }}$
Moles	$=\frac{24}{12}$
Moles	$=2$ moles of carbon

Task 8

Calculate the number of moles in the following elements?

1) 59 g of cobalt
2) 4.14 g of lead
3) 1.08 g of gold

This can get increased very quickly to include compounds and not just elements.

In this we use a very similar Mole equation:

Moles $=\quad \underline{\text { Mass }}$
R.F.M This is the Relative formula mass
e.g. $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}+\mathrm{H}+\mathrm{O}$
$1+1+16=18$
e.g.

How many moles are their in 88 g of carbon dioxide?

Moles	$=\frac{\text { Mass }}{\text { R.F.M }}$	
	$=\frac{88}{44}$	CO_{2}
	$=2$ mole $+\mathrm{O}+\mathrm{O}$	
		$12+16+16=44$

NOTE- Good practice

It is always good practice to start with the equation in word form then put the numbers in from the questions
It is also good practice to show how you have worked out the RFM so if there is an error you can still get method marks.

Task 9

How many moles are there in the following:

1) 62 g of sodium Oxide $\mathrm{Na}_{2} \mathrm{O}$
2) 174 g of lithium bromide LiBr
3) 3.2 g of oxygen
4) 1.24 g of Ammonia

Changing the equation

We can have this mole equation in a simple MAGIC TRIANGLE and easily change the aspect we are trying to work out.

So we may get asked to calculate the Mass or Relative formula mass.

Task 10

Calculate the :

1) Mass of 2 moles of calcium metal
2) 0.25 moles of lead carbonate PbCO_{3}
3) The formula mass of a compound which has 0.5 moles of mass 14 g

EXT
 Harder question

Task 11

250 g of hydrated copper sulphate $\left(\mathrm{CuSO}_{4} \cdot \mathrm{x} \mathrm{H}_{2} \mathrm{O}\right)$ is collected and a student want to calculate the number of moles of water attached to the copper sulphate, the x value.
The student completely dried the copper sulphate and the new mass was found to be 160 g
a) Calculate the moles of copper sulphate
b) Calculate the mass of lost water
c) Calculate the number of moles of lost water
d) Therefore deduce the formula of the hydrated copper sulphate.

Moles and solution

When we dissolve a solid in water we create a solution.
We use a different mole equation to calculate the moles in the solutions we create.

e.g.

How many moles are there in 250 cm 3 of 0.1 M Hydrochloric acid?

Moles $=\frac{\text { Conc } x \text { Vol }}{1000}$
$=\frac{0.1 \mathrm{x} \quad 250}{1000}$
$=\quad 0.025$ Moles

This equation can again be moved around if you have to calculate the concentration using the moles and volume.

$$
\mathrm{dm}^{3}=\mathrm{cm}^{3} / 1000
$$

Task 12

1) Calculate the moles in 40 ml of 5 M of sodium hydroxide solution
2) What is the concentration when you dissolve 2 moles of acid in 100 ml of water
3) How many moles are there in 500 ml of $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$ of salt solution
4) What is the concentration of 0.25 moles of alkali in 25 ml

EXT

Combining our work

We often need to combine this work on moles and work out the mass of a solid we need to make up a set concentration of a solution.
I.e. we want to make 100 ml volume of a 0.5 M solution of sodium Hydroxide, how much mass do we need to dissolve?

1) How many moles are in this solution,

Moles	$=\frac{\text { Conc } \mathrm{x} \mathrm{Vol}}{1000}$
	$=$$0.5 \mathrm{M} \mathrm{x} \mathrm{100ml}$ 1000
	$=\underline{0.05}$ Moles of sodium hydroxide in solution

2) What mass do we need for that many moles,
```
Mass = moles x RFM
    = 0.05 x 40
    = 2g
```

So we will need to dissolve 2 g in the 100 ml to make the required solution concentration of 0.5 M .

Task 13

1) How many grams of potassium oxide $\left(\mathrm{K}_{2} \mathrm{O}\right)$ are needed to make 100 ml of a 0.5 M solution?
2) What is the concentration of a solution when we dissolve 730 g of hydrochloric acid in $350 \mathrm{~cm}^{3}$?
3) What is the mass of calcium oxide, CaO needed to make a 250 ml volume of 0.5 M solution?

NOTE- HINT

Keep looking carefully at the units
$\mathrm{Ml}=\mathrm{cm}^{3}$ for volume $\quad \mathrm{mol} / \mathrm{dm}^{3}=$ Molarity $=\mathrm{M}$ for concentration

Molar Ratio

This is the link between the balanced symbol equations and the amount of moles of each substance in the reaction.
Simply it is the ratio of the numbers in front of the compounds in the balanced symbol equation.
e.g.

$$
2 \mathrm{Ca}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CaO}
$$

In this equation the Molar ratio is:

$$
2 \quad: \quad 1 \quad \longrightarrow \quad 2
$$

Means:

2 moles of calcium will react with 1 mole of oxygen and we will make 2 moles of the calcium oxide.

As it is a ratio these numbers can be varied,

So if we actually had $\mathbf{1 0}$ moles of the calcium?

2	$:$	1			
10	$:$	5			
10		10	original ratio		

So 10 moles of the calcium would react with 5 moles of the oxygen and form 10 moles of the calcium oxide

Or if we wanted to make $\mathbf{0 . 2 5}$ moles of the calcium oxide
2
: $\quad 1$
2
original ratio
0.25
$0.25 \quad: \quad 0.125 \quad \longrightarrow \quad 0.25$

We would need 0.25 moles of the CaO

Final mole equation work

We are often asked to calculate how much we will produce in a reaction from a certain starting amount of reactants, or how much reactants we will need to make a set amount of products.

We put together the :

- Molar ratio work with the balanced equation
- The different moles equations

NOTE

If it involves a SOLID it is ...

If it involves a solution it is ..
e.g.

Calcium oxide reacts with water to form calcium hydroxide.
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
If I started with 28 g of the calcium oxide what mass of calcium hydroxide would I make, and if it was in 100 ml of water what would its concentration be


```
Ca(OH)2
Ca +O+H+O+H
40 + 16 + 1 + 16 + 1 = 74
```

And the solution concentration would be:

$$
\begin{gathered}
0.5 \mathrm{moles} \\
100 \mathrm{ml} \\
\text { Conc }=\frac{1000 \times \text { mole }}{\text { Vol }} \\
\text { Conc }=\frac{1000 \times 0.5}{100} \\
\text { Conc }=5 \mathrm{~mol} / \mathrm{dm}^{3}
\end{gathered}
$$

Task 14

1) Calcium cyanamide CaCN_{2} reacts with water to form calcium carbonate and ammonia
$\mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaCO}_{3}+\mathrm{NH}_{3}$
What mass of calcium carbonate is formed if 20 g of the CaCN_{2} is reacted with excess water.
2) Magnesium burns in air to make magnesium oxide
$2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
What mass of magnesium would you need to create 0.8 g of magnesium oxide powder.
3) Iron reacts with water to form iron oxide and hydrogen
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
If the student starts with 1.68 g of iron and it undergoes a complete reaction
i) Number of moles of iron started with?
ii) Moles of tri Iron oxide formed
iii) Mass of tri iron oxide formed
iv) The concentration of this solution if we had 500 ml of water in the reaction?
4) 25 ml of 0.1 M HCl reacts with 50 ml of NaOH solution fully What is the concentration of the NaOH solution.
$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Chapter 5

Organic chemistry

This is a branch of chemistry that looks at compounds of carbon chained molecules.
The main source of these compounds is CRUDE OIL.
We FRACTIONALLY DISTILL this to separate it out into different FRACTIONS which have similar boiling points, size and properties.

Task 15

Imagine you are a small CH_{4} molecule in crude oil and you are being fractionally distilled,
What happened to you?
Why?
What happens to other molecules at the same time?
Why?
USE correct technical language to explain what's going on.

Types of organic compound

There are lots of different types of organic compound which are based upon their FUNCTIONAL GROUPS or parts of the compound which determine how they react.

Functional Group	Type of Compound	Suffix or Prefix	Example	Systematic Name (common name)
	Alkene	ene		Ethene (Ethylene)
$-\mathrm{C} \equiv \mathrm{C}-$	Alkyne	-1/ne	$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	Ethyne (Acetylene)
	Alcohol	-ol		Methanol (Methyl alcohol)
	Ether	ether		Dimethyl ether
$\text { (} \mathrm{X}=\text { halogen) }$	Haloalkane	halo-		Chloromethane (Methyl chloride)
	Amine	-amine		Ethylamine
	Aldehyde	-al		Ethanal (Acetaldehyde)
	Ketone	-one		Propanone (Acetone)
	Carboxylic acid	-oic acid		Ethanoic acid (Acetic acid)
	Ester	-oate		Methyl ethanoate (Methyl acetate)
	Amide	-amide		Ethanamide (Acetamide)

The table shows the most common functional groups with examples and naming ideas.

Another aspect of organic compounds is the SERIES (called HOMOLOGOUS SERIES) you have of compounds which all have the same functional group. These all increase by -CH 2 - each time and have a common pattern of naming linked to the number of carbons in the compound.

Name	Molecular formula	Full structural formula
Methane	CH_{4}	
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	
Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	

Task 16

Research
What are the FIRST 10 stem names for organic compounds using alcohols as an example write out the molecular formula for the first 10, draw out the full structural/ displayed formula for the first 10 and names then as well.
(HINT complete a table like one above but for the first 10 alcohols!)

Chapter 6

Calculations on efficiency of reactions.

There are two main methods that are used to look over the efficiency of chemical reactions.

1) Atom economy

This is a measure of the useful products compared to all the products. e.g.

Ethanol is decomposed into useful ethane and waste water.

	Ethanol	Ethene	+	Water
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$
RFM	46	28		18

Atom economy	$=$ mass of useful product
	$=100$
	$=\frac{28}{\text { mass of all reactants }} \times 100$

$$
=\underline{60.9 \%}
$$

Task 17

What is the Atom economy in:

1) Hydrogen is used in synthesising ammonia and is made on a large scale from reacting methane with water

$$
\begin{aligned}
& \text { methane + water }==>\text { hydrogen }+ \text { carbon monoxide } \\
& \qquad \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}==>3 \mathrm{H}_{2}+\mathrm{CO}
\end{aligned}
$$

2) In the blast furnace where we form Iron .

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})}===>2 \mathrm{Fe}_{(\mathrm{l})}+3 \mathrm{CO}_{2(\mathrm{~g})}
$$

2) Percentage yield

This is the second method we use to calculate the efficiency of the reaction.
This gives an idea of what is actually formed in reality as compared to what we would expect to be formed.

Percent $=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%$

NOTE

You are often given the actual amount you form BUT you have to work out the theoretical amount from a mole calculation.
e.g. Ethanol is decomposed into useful ethane and waste water.
Ethanol
Ethene + Water
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}$

We create 1.4 g of the ethene from a starting mass of 4.6 g of ethanol, what is the percentage yield.

This is the theoretical yield amount i.e this is the full amount that could possibly be formed

Final calc \begin{tabular}{rl}

percentage
yield

\& $=\frac{1.4}{2.8} \times 100$

\& $=\underline{50 \%}$
\end{tabular}

Task 18

1) When 5.00 g of KClO_{3} is heated it decomposes according to the equation: $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
a) Calculate the theoretical yield of oxygen.
b) Give the $\%$ yield if 1.78 g of O_{2} is produced.
c) How much O_{2} would be produced if the percentage yield was 78.5% ?
2) The electrolysis of water forms H_{2} and O_{2}.
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
What is the \% yield of O_{2} if 12.3 g of O_{2} is produced from the decomposition of $14.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?

Appendix I
Common ions

Positive Ions (cations)		Negative Ions (anions)
Name	Farmula	Name Formula
Hydrogen	H^{+}	Chloride Cl^{-}
Sadium	Na^{+}	Bramide $\mathrm{Br}^{\text {² }}$
Silyer	Ag^{+}	Fluoride F^{-}
Potasssium	K^{+}	Indide I^{-}
Lithium	Li+	Hydroxide OH^{-}
Ammonium	$\mathrm{NH}_{4}{ }^{+}$	Nitrate $\mathrm{NO}_{3}{ }^{-}$
Barium	Ba^{2+}	Dxide $\square^{\mathbf{2 -}}$
Calcium	$\mathrm{Ca} \mathrm{a}^{2+}$	Sulphide $5^{\mathbf{2 -}}$
Copper(II)	Cu ${ }^{2+}$	Sulphate $\mathrm{SO}_{4}^{\mathbf{2 -}}$
Magnesium	$\mathrm{Mg}^{\mathbf{2 +}}$	Carbonate $\mathrm{CO}^{\mathbf{2 -}}$
Zinc	Z $\mathrm{n}^{\mathbf{2 +}}$	Carbonate CL_{3}
Lead	Pb ${ }^{\mathbf{2 +}}$	Hydrogencarbonate
Iron(II)	Fe^{2+}	HCO
Iron(III)	Fe^{3+}	HCS_{3}
Aluminium	Al ${ }^{\text {+ }}$	

Appendix II

		${ }^{\text {立 }{ }_{8}{ }^{\text {a }} \text { 8 }}$		${ }^{\text {cex }}$ ¢		
	－ $\boldsymbol{4}$	亩哏哏	－\square^{8}			\bigcirc
		¢ ${ }_{\text {c }}$	${ }^{\text {a }}$（ ${ }^{\text {a }}$	${ }^{3} \mathrm{O}{ }^{8}$		${ }^{8}$ E
	－	$4{ }^{4}$	－¢ ¢ ${ }^{\text {a }}$			
		$\left.{ }^{4}\right]^{\text {d }}$	の ${ }^{\text {¢ }}$	$8{ }^{\text {2 }}$		
		－$\square_{\text {¢ }}$		${ }^{=}$F ${ }^{\text {a }}$		a
		${ }^{5} \mathbf{N}$	－	조［1］	－	：
		こ ${ }^{\text {a }}$	－${ }^{\text {c }}$	辰 ${ }^{8}$	－	당
		2180	진	－立蔀	－n	
$\underset{\sim}{\underset{\sim}{ \pm}}$	墨		－${ }^{\text {c }}$ 或	－		E
$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \end{aligned}$			；푸읭ํ	－ 0		E
		${ }^{2} \times$	－ 0	－${ }^{\text {¢ }}$		들
．		${ }^{\text {a }}$－${ }^{\text {c }}$	${ }^{\text {a }}$ 잋	$3{ }^{3}$	8	
음	$=$	$\Rightarrow>8$			－$\square^{\text {a }}$	
읃		il	－${ }^{\text {N }}$	＊	涪	
			入	\pm	${ }^{2}$ 이의	
	- ©	${ }^{\text {® }}$ ¢ ${ }^{\text {c }}$	あ分 ${ }^{\text {¢ }}$	${ }^{\text {® }}$	${ }^{\text {¢ ¢ }}$	
\pm	－\square^{5}		${ }^{\text {a }}$（ ${ }_{\text {c }}^{\text {c }}$	¢ ${ }^{\text {c }}$	立	

Periods are Horizontal across the table
Groups are vertical down the table

