Bridging

Booklet

ANSWER BOOKLET

$$
\begin{aligned}
& \text { Kidy } \\
& \text { KEEP } \\
& \text { CALM } \\
& \text { STUDDY } \\
& \text { CHEMISTRY }
\end{aligned}
$$

Task 1

Ionic or Covalently bonded
a)
b)
c)
d)
e)

Task 2

Drawing out

Dot/Cross diagram
Atoms to lons

1) Aluminium Oxide
2) Lithium Oxide
3) Barium Nitride

Task 3 (HINT Use Appendix I to help)

Put the final answer in the box provided

1) Silver chloride
2) Lithium sulphate
3) Ammonium Hydroxide
4) Potassium Dichromate
5) Iron (II) Nitrate

Task 4

Elements in compounds

1) AgNO_{3}
2) PbCO_{3}
3) SnCl_{2}
4) $\mathrm{Mg}(\mathrm{OH})_{2}$

Task 5

Dot / Cross Line diagrams

1) Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$
2) Propene $\mathrm{C}_{3} \mathrm{H}_{6}$
3) Hydrogen Peroxide $\mathrm{H}_{2} \mathrm{O}_{2}$
4) Hydrogen Sulphide $\mathrm{H}_{2} \mathrm{~S}$

Task 6

Research on melting points $\mathrm{Na}-\mathrm{Mg}-\mathrm{Al}$

Task 7

Balancing equations

1) $\mathrm{N}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}$
2) $\mathrm{CH}_{4}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
3) $\mathrm{Na}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
4) $\mathrm{SO}_{2}+\mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$
5) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Task 8

Moles in the following:

1) 59 g of cobalt

2) 4.14 g of lead
3) 1.08 g of gold

Task 9

Moles in these compounds:

1) 62 g of sodium Oxide $\mathrm{Na}_{2} \mathrm{O}$
2) 174 g of lithium bromide LiBr
3) 3.2 g of oxygen
4) 1.24 g of Ammonia

Task 10

Calculate the mass of:

1) Mass of 2 moles of calcium metal
2) 0.25 moles of lead carbonate PbCO_{3}

3) The formula mass of a compound which has 0.5 moles of mass 14 g

Task 11

a)
b)
c)
d)

Task 12

1) Calculate the moles in 40 ml of 5 M of sodium hydroxide solution
2) What is the concentration when you dissolve 2 mole
 water

3) How many moles are their in 500 ml of $0.1 \mathrm{~mol} / \mathrm{dm} 3$ of salt solution

4) What is the concentration of 0.25 moles of alkali in 25 ml

Task 13

1) How many grams of potassium oxide $\left(\mathrm{K}_{2} \mathrm{O}\right)$ are needed to make 100 ml of a 0.5 M solution ?

2) What is the concentration of a solution when we dissolve 730 g of hydrochloric acid in $350 \mathrm{~cm}^{3}$?

3) What is the mass of calcium oxide, CaO needed to make a 250 ml volume of 0.5 M solution?

Task 14

1) Calcium cyanamide CaCN_{2} reacts with water to form calcium carbonate and ammonia
$\mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaCO}_{3}+\quad \mathrm{NH}_{3}$
What mass of calcium carbonate is formed if 20 g of the CaCN_{2} is reacted with excess water.
2) Magnesium burns in air to make magnesium oxide
$2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
What mass of magnesium would you need to create 0.8 g of magnesium oxide powder.
3) Iron reacts with water to form iron oxide and hydrogen
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$ If the student starts with 1.68 g of iron and it undergoes a complete reaction
i) Number of moles of iron started with?
ii) Moles of tri Iron oxide formed
iii) Mass of tri iron oxide formed
iv) The concentration of this solution if we had 500 ml of water in the reaction?

Task 15

Imaginary story! You are CH_{4}
Use as much technical language as you can and HIGHLIGHT these key words
\qquad

Task 16

	Name	Molecular formula	Structural/displayed
1			
2			
3			
4			
5			
7			
8			

Task 17

1) Hydrogen is used in synthesising ammonia and is made on a large scale from reacting methane with water

$$
\begin{aligned}
& \text { methane }+ \text { water }==>\text { hydrogen }+ \text { carbon monoxide } \\
& \qquad \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}==>3 \mathrm{H}_{2}+\mathrm{CO}
\end{aligned}
$$

2) In the blast furnace where we form Iron

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})}===>2 \mathrm{Fe}_{(\mathrm{l})}+3 \mathrm{CO}_{2(\mathrm{~g})}
$$

Task 18

1) When 5.00 g of KClO_{3} is heated it decomposes according to the equation: $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
a) Calculate the theoretical yield of oxygen.
b) Give the $\%$ yield if 1.78 g of O_{2} is produced.
c) How much O_{2} would be produced if the percentage yield was 78.5% ?
2) The electrolysis of water forms H_{2} and O_{2}.
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
What is the \% yield of O_{2} if 12.3 g of O_{2} is produced from the decomposition of $14.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?
