Bridging Booklet ANSWER BOOKLET

<u>Task 1</u>

Ionic or Covalently bonded

- a)
- b)
- c)
- d)
- e)

<u>Task 2</u>

Drawing out

Dot/ Cross diagram Atoms to lons

1) Aluminium Oxide

2) Lithium Oxide

3) Barium Nitride

Task 3 (HINT Use Appendix I to help)

Put the final answer in the box provided

- 1) Silver chloride
- 2) Lithium sulphate
- 3) Ammonium Hydroxide
- 4) Potassium Dichromate
- 5) Iron (II) Nitrate

<u>Task 4</u>

Elements in compounds

1) AgNO $_3$

3) SnCl₂

4) Mg(OH)₂

Task 5				
Dot / Cross	Line diagrams			
1) Ethane C ₂ H ₆				
2) Propene C₃H6				
3) Hydrogen Peroxide H ₂ O ₂				
4) Hydrogen Sulphide H ₂ S				

<u>Task 6</u>

Research on melting points Na-Mg-Al

<u>Task 7</u>

Balancing equations

1)	N_2	+	H ₂	\longrightarrow	NH_3		
2)	CH₄	+	O ₂	\longrightarrow	CO ₂	+	H₂O
3)	Na	+	H_2SO_4	\longrightarrow	Na ₂ SO ₄	+	H₂O
4)	SO ₂	+	NaOH	\longrightarrow	Na_2SO_3	+	H₂O
5)	C₂H₅OH	+	O ₂	\longrightarrow	CO ₂	+	H ₂ O

<u> Task 8</u>

Moles in the following: 1) 59 g of cobalt

2) 4.14 g of lead

3) 1.08g of gold

<u>Task 9</u>

Moles in these compounds:

- 1) 62 g of sodium Oxide Na_2O
- 2) 174 g of lithium bromide LiBr

4) 1.24 g of Ammonia

<u>Task 10</u>

<u>Task 11</u>

a)

b)

c)

d)

Calculate the mass of:

1) Mass of 2 moles of calcium metal

3) The formula mass of a compound which has 0.5 moles of mass 14g

\sim		

<u>Task 12</u>

- 1) Calculate the moles in 40 ml of 5M of sodium hydroxide solution
- 2) What is the concentration when you dissolve 2 mole water
- 3) How many moles are their in 500ml of 0.1 mol/dm3 of salt solution
- 4) What is the concentration of 0.25 moles of alkali in 25 ml

<u>Task 13</u>

- 1) How many grams of potassium oxide (K₂O) are needed to make 100ml of a 0.5M solution ?
- 2) What is the concentration of a solution when we dissolve 730g of hydrochloric acid in 350 cm³?
- 3) What is the mass of calcium oxide, CaO needed to make a 250 ml volume of 0.5 M solution?

<u>Task 14</u>

1) Calcium cyanamide ${\sf CaCN}_2$ reacts with water to form calcium carbonate and ammonia

 $\label{eq:caCN2} CaCN_2 \quad + \quad 3H_2O \longrightarrow CaCO_3 \quad + \quad NH_3$ What mass of calcium carbonate is formed if 20g of the CaCN2 is reacted with excess water.

 2) Magnesium burns in air to make magnesium oxide 2Mg + O₂ → 2MgO What mass of magnesium would you need to create 0.8g of magnesium oxide powder.

- 3) Iron reacts with water to form iron oxide and hydrogen
 - $3Fe \quad + \qquad 4H_2O \quad \longrightarrow \ Fe_3O_4 \quad + \qquad 4H_2$
 - If the student starts with 1.68g of iron and it undergoes a complete reaction
 - i) Number of moles of iron started with?
 - ii) Moles of tri Iron oxide formed
 - iii) Mass of tri iron oxide formed
 - iv) The concentration of this solution if we had 500ml of water in the reaction?

<u>Task 15</u>

Imaginary story! You are CH₄

Use as much technical language as you can and **<u>HIGHLIGHT</u>** these key words

_____ _____

<u>Task 16</u>

	Name	Molecular formula	Structural/displayed
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

<u>Task 17</u>

1) Hydrogen is used in synthesising ammonia and is made on a large scale from reacting methane with water

methane + water ==> hydrogen + carbon monoxide

 $CH_4 + H_2O = 3H_2 + CO$

2) In the blast furnace where we form Iron .

Fe₂O_{3(s)} + 3CO_(g) ===> 2Fe_(l) + 3CO_{2(g)}

<u>Task 18</u>

1) When 5.00 g of KClO₃ is heated it decomposes according to the equation: 2KClO₃ \rightarrow 2KCl + 3O₂

- a) Calculate the theoretical yield of oxygen.
- b) Give the % yield if 1.78 g of O_2 is produced.
- c) How much O₂ would be produced if the percentage yield was 78.5%?

2) The electrolysis of water forms H₂ and O₂.

 $2H_2O \rightarrow 2H_2 + O_2$

What is the % yield of O_2 if 12.3 g of O_2 is produced from the decomposition of 14.0 g H_2O ?